Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611728

RESUMO

The epidermal growth factor receptor (EGFR) plays a pivotal role in cancer therapeutics, with small-molecule EGFR inhibitors emerging as significant agents in combating this disease. This review explores the synthesis and clinical utilization of EGFR inhibitors, starting with the indispensable role of EGFR in oncogenesis and emphasizing the intricate molecular aspects of the EGFR-signaling pathway. It subsequently provides information on the structural characteristics of representative small-molecule EGFR inhibitors in the clinic. The synthetic methods and associated challenges pertaining to these compounds are thoroughly examined, along with innovative strategies to overcome these obstacles. Furthermore, the review discusses the clinical applications of FDA-approved EGFR inhibitors such as erlotinib, gefitinib, afatinib, and osimertinib across various cancer types and their corresponding clinical outcomes. Additionally, it addresses the emergence of resistance mechanisms and potential counterstrategies. Taken together, this review aims to provide valuable insights for researchers, clinicians, and pharmaceutical scientists interested in comprehending the current landscape of small-molecule EGFR inhibitors.


Assuntos
Carcinogênese , Transformação Celular Neoplásica , Humanos , Afatinib , Receptores ErbB , Cloridrato de Erlotinib
2.
Eur J Med Chem ; 265: 116124, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183778

RESUMO

In 2023, the U.S. Food and Drug Administration (FDA) granted approval to a total of 55 new drugs, comprising 29 new chemical entities (NCEs) and 25 new biological entities (NBEs). These drugs primarily focus on oncology, the central nervous system, anti-infection, hematology, cardiovascular, ophthalmology, immunomodulatory and other therapeutic areas. Out of the 55 drugs, 33 (60 %) underwent an accelerated review process and received approval, while 25 (45 %) were specifically approved for the treatment of rare diseases. The purpose of this review is to provide an overview of the clinical uses and production techniques of 29 newly FDA-approved NCEs in 2023. Our intention is to offer a comprehensive understanding of the synthetic approaches employed in the creation of these drug molecules, with the aim of inspiring the development of novel, efficient, and applicable synthetic methodologies.


Assuntos
Aprovação de Drogas , Imunomodulação , Estados Unidos , United States Food and Drug Administration , Preparações Farmacêuticas
3.
Eur J Pharm Sci ; 193: 106678, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38114052

RESUMO

The advancement and practical use of small-molecule tyrosine kinase inhibitors (TKIs) that specifically target the BCR-ABL fusion protein have introduced a revolutionary era of precision medicine for the treatment of chronic myeloid leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL). This review offers a comprehensive exploration of the synthesis, mechanisms of action, and clinical implementation of clinically validated TKIs in the context of BCR-ABL, emphasizing the remarkable strides made in achieving therapeutic precision. We delve into the intricate design and synthesis of these small molecules, highlighting the synthetic strategies and modifications that have led to increased selectivity, enhanced binding affinities, and reduced off-target effects. Additionally, we discuss the structural biology of BCR-ABL inhibition and how it informs drug design. The success of these compounds in inhibiting aberrant kinase activity is a testament to the meticulous refinement of the synthetic process. Furthermore, this review provides a detailed analysis of the clinical applications of these TKIs, covering not only their efficacy in achieving deep molecular responses but also their impact on patient outcomes, safety profiles, and resistance mechanisms. We explore ongoing research efforts to overcome resistance and enhance the therapeutic potential of these agents. In conclusion, the synthesis and utilization of clinically validated small-molecule TKIs targeting BCR-ABL exemplify the transformative power of precision medicine in the treatment of hematological malignancies. This review highlights the evolving landscape of BCR-ABL inhibition and underscores the continuous commitment to refining and expanding the therapeutic repertoire for these devastating diseases.


Assuntos
Neoplasias Hematológicas , Humanos , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Fusão bcr-abl/metabolismo , Neoplasias Hematológicas/tratamento farmacológico
4.
J Immunol Res ; 2022: 7945884, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438198

RESUMO

Neuroblastoma (NB) is the most common solid tumor of the neural crest cell origin in children and has a poor prognosis in high-risk patients. The oncogene MYCN was found to be amplified at extremely high levels in approximately 20% of neuroblastoma cases. In recent years, research on the targeted hydrolysis of BRD4 to indirectly inhibit the transcription of the MYCN created by proteolysis targeting chimaera (PROTAC) technology has become very popular. dBET57 (S0137, Selleck, TX, USA) is a novel and potent heterobifunctional small molecule degrader based on PROTAC technology. The purpose of this study was to investigate the therapeutic effect of dBET57 in NB and its potential mechanism. In this study, we found that dBET57 can target BRD4 ubiquitination and disrupt the proliferation ability of NB cells. At the same time, dBET57 can also induce apoptosis, cell cycle arrest, and decrease migration. Furthermore, dBET57 also has a strong antiproliferation function in xenograft tumor models in vivo. In terms of mechanism, dBET57 targets the BET protein family and the MYCN protein family by associating with CRBN and destroys the SE landscape of NB cells. Combined with RNA-seq and ChIP-seq public database analysis, we identified the superenhancer-related genes TBX3 and ZMYND8 in NB as potential downstream targets of dBET57 and experimentally verified that they play an important role in the occurrence and development of NB. In conclusion, these results suggest that dBET57 may be an effective new therapeutic drug for the treatment of NB.


Assuntos
Neuroblastoma , Proteínas Nucleares , Criança , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína Proto-Oncogênica N-Myc/uso terapêutico , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Linhagem Celular Tumoral , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
5.
Theriogenology ; 188: 79-89, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35688042

RESUMO

ATP is essential for mammalian sperm to maintain fertilizing capacity. Metformin (Met) can activate 5'-AMP-activated protein kinase (AMPK) to maintain energy homeostasis. Thus, the aim of the present study was to investigate whether Met can improve testis function, semen quality, antioxidant and autophagy capacity through AMPK mediation of energy metabolism in goats. Twelve adult goats were randomly divided into three dietary treatments. All goats were fed a basal diet for 3 weeks and then assigned to a Met supplementation diet containing 0, 150, or 300 mg/kg for 8 weeks. The results showed that sperm viability, sperm membranal functional integrity, and acrosome integrity increased (P < 0.05) relative to the other treatments in the 300 mg/kg Met group. Growth hormone (GH) and insulin-like growth factor (IGF-1) in the 300 mg/kg Met group significantly decreased (P < 0.05) relative to the control group. Estrogen levels (E2) in the 300 mg/kg Met group remarkably improved (P < 0.05) compared with the control group. The activities of the antioxidant enzymes catalase (CAT), glutathione peroxidase (GSH-px), and superoxide dismutase (SOD) significantly increased (P < 0.05) in the 300 mg/kg Met group relative to the control group. A significant increase in AMPK and p-AMPK protein expression in the 300 mg/kg Met group was observed relative to the control group (P < 0.05). Belicin-1 and LC3II/I protein expression was significantly increased by adding Met to the diet (P < 0.05) and reached a maximum in the 300 mg/kg Met group. In addition, differentially expressed genes (DEGs) of goat testis were confirmed by RNA-seq. GO enrichment analysis revealed that DEGs were enriched in testicular metabolism and sperm development-related functional pathways. Overall, the results indicate that Met may play an important role in the regulation of testis function, semen quality, antioxidant, and autophagy capacity. These findings will help elucidate the role of Met in goat testis development.


Assuntos
Metformina , Análise do Sêmen , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antioxidantes/metabolismo , Autofagia , Suplementos Nutricionais , Cabras/fisiologia , Masculino , Metformina/farmacologia , Análise do Sêmen/veterinária , Espermatozoides/fisiologia , Testículo/metabolismo
6.
Cell Biosci ; 12(1): 33, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35303940

RESUMO

BACKGROUND: Neuroblastoma (NB) is a common extracranial malignancy with high mortality in children. Recently, super-enhancers (SEs) have been reported to play a critical role in the tumorigenesis and development of NB via regulating a wide range of oncogenes Thus, the synthesis and identification of chemical inhibitors specifically targeting SEs are of great urgency for the clinical therapy of NB. This study aimed to characterize the activity of the SEs inhibitor GNE987, which targets BRD4, in NB. RESULTS: In this study, we found that nanomolar concentrations of GNE987 markedly diminished NB cell proliferation and survival via degrading BRD4. Meanwhile, GNE987 significantly induced NB cell apoptosis and cell cycle arrest. Consistent with in vitro results, GNE987 administration (0.25 mg/kg) markedly decreased the tumor size in the xenograft model, with less toxicity, and induced similar BRD4 protein degradation to that observed in vitro. Mechanically, GNE987 led to significant downregulation of hallmark genes associated with MYC and the global disruption of the SEs landscape in NB cells. Moreover, a novel candidate oncogenic transcript, FAM163A, was identified through analysis of the RNA-seq and ChIP-seq data. FAM163A is abnormally transcribed by SEs, playing an important role in NB occurrence and development. CONCLUSION: GNE987 destroyed the abnormal transcriptional regulation of oncogenes in NB by downregulating BRD4, which could be a potential therapeutic candidate for NB.

7.
Nanotechnology ; 32(48)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34359060

RESUMO

A new nanomaterial or nano-filler in the form of multiwalled carbon nanotube-zinc oxide (MWCNT-ZnO) was synthesized for the purpose of modifying poly(butylene adipate-co-terephthalate) (PBAT) and its derivative (modified PBAT or MPBAT) through a melt-blending method (MPBAT was obtained by introducing maleic anhydride groups into PBAT). The effect of the new nano-filler on the properties of resultant nanocomposites was determined from the characterization of mechanical properties, morphology, crystallinity, thermal stability, barrier properties, hydrophilicity, conductivity, antibacterial property, and biodegradability. The results showed that MPBAT nanocomposites had stronger mechanical properties, better barrier properties, and higher electrical conductivity than PBAT nanocomposites. Scanning electron microscopy illustrated that MWCNT-ZnO had better compatibility with MPBAT than with PBAT. At 0.2% MWCNT-ZnO, the MPBAT/MWCNT-ZnO nanocomposite film exhibited the greatest mechanical properties (17.74% increase in tensile strength, 22.17% in yield strength, and 14.29% in elongation at break). When the MWCNT-ZnO content was 0.4%, the nanocomposite film demonstrated the best water vapor barrier ability (an increase of 30.4%). The MPBAT/MWCNT-ZnO film with 0.6% MWCNT-ZnO turned out to have the best oxygen barrier performance (an increase of 130% relative to pure PBAT). It was shown from the results of antibacterial evaluation that the new nanomaterial could impart PBAT and MPBAT with antibacterial activity. The biodegradability tests indicated that an MWCNT-ZnO content of 0.2% could slightly reduce the biodegradability, and when the content was higher than 0.2%, the weight loss rate would increase.

8.
Gene ; 710: 131-139, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31158446

RESUMO

As a fundamental regulator of mitochondrial function, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) acts as a powerful coactivator of many transcriptional factors that relate to steroidogenesis, while the regulatory mechanism remains unclear. In the present study, testosterone secretion of goat Leydig cells (LCs) mediated by miR-1197-3p via PPARGC1A was investigated. We found PPARGC1A protein was diversely localized in testis, and the expression of PPARGC1A in testis of 9-month-old goat was significantly higher than that in 3-month-old goat. In addition, suppression of PPARGC1A significantly decreased the testosterone secretion in goat LCs, as well as reduced the expressions of key steroidogenesis related genes [steroidogenic acute regulatory protein (StAR), cytochrome P450 family 11 subfamily A member 1 (CYP11A1), and 3 beta-hydroxysteroid dehydrogenase (3BHSD)], and overexpression of PPARGC1A showed the opposite effects. Moreover, we observed suppression of miR-1197-3p increased the synthesis of testosterone and promoted the expressions of PPARGC1A, StAR, CYP11A1, and 3BHSD by directly targeting PPARGC1A in the LCs. Furthermore, overexpression of PPARGC1A could alleviate miR-1197-3p induced aberrant steroidogenesis related gene expressions and testosterone synthesis. Taken together, miR-1197-3p could act as an essential regulator of LC testosterone secretion in goat testis by targeting PPARGC1A. These results provide a novel view of the regulatory mechanisms involved in male sexual maturation and help us to understand the molecular role of PPARGC1A in testosterone synthesis.


Assuntos
Células Intersticiais do Testículo/metabolismo , MicroRNAs/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Testosterona/metabolismo , Animais , Células Cultivadas , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Cabras , Masculino , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
9.
Insect Sci ; 24(3): 431-442, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28547891

RESUMO

Host alternation, an obligatory seasonal shifting between host plants of distant genetic relationship, has had significant consequences for the diversification and success of the superfamily of aphids. However, the underlying molecular mechanism remains unclear. In this study, the molecular mechanism of host alternation was explored through a large-scale gene expression analysis of the mealy aphid Hyalopterus persikonus on winter and summer host plants. More than four times as many unigenes of the mealy aphid were significantly upregulated on summer host Phragmites australis than on winter host Rosaceae plants. In order to identify gene candidates related to host alternation, the differentially expressed unigenes of H. persikonus were compared to salivary gland expressed genes and secretome of Acyrthosiphon pisum. Genes involved in ribosome and oxidative phosphorylation and with molecular functions of heme-copper terminal oxidase activity, hydrolase activity and ribosome binding were potentially upregulated in salivary glands of H. persikonus on the summer host. Putative secretory proteins, such as detoxification enzymes (carboxylesterases and cytochrome P450s), antioxidant enzymes (peroxidase and superoxide dismutase), glutathione peroxidase, glucose dehydrogenase, angiotensin-converting enzyme, cadherin, and calreticulin, were highly expressed in H. persikonus on the summer host, while a SCP GAPR-1-like family protein and a salivary sheath protein were highly expressed in the aphids on winter hosts. These results shed light on phenotypic plasticity in host utilization and seasonal adaptation of aphids.


Assuntos
Adaptação Biológica , Afídeos/metabolismo , Herbivoria , Proteínas de Insetos/metabolismo , Animais , Afídeos/genética , Perfilação da Expressão Gênica , Proteínas de Insetos/genética , Prunus , Glândulas Salivares/metabolismo , Estações do Ano
10.
Insect Biochem Mol Biol ; 83: 94-106, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28284855

RESUMO

Cuticular proteins (CPs) are vital components of the insects' cuticle that support movement and protect insect from adverse environmental conditions. The CPs exist in a large number and diversiform structures, thus, the accurate annotation is the first step to interpreting their roles in insect growth. The rapid development of sequencing technology has simplified the access to the information on protein sequences, especially for non-model species. Dendrolimus punctatus is a Lepidopteran defoliator, and its periodic outbreaks cause severe damage to the coniferous forests. The transcriptome of D. punctatus integrating the whole developmental periods are available for the potential investigation of CPs. In this study, we identified 216 CPs from D. punctatus, including 147 from CPR family, 4 from TWDL family, 3 from CPF/CPFL families, 22 from CPAP families, 8 low complexity proteins, 1 CPCPC and 31 from other CP families. The putative CPs were compared with homologs in other species such as Bombyx mori, Manduca sexta and Drosophila melanogaster. We further identified five co-orthologous groups have highly similar sequences of CRPs in nine lepidopteran species, which exclusively presented in RR-2 subfamily rather than RR-1. We inferred that in Lepidoptera the difference in RR-2 numbers was maintained by homologs in co-orthologous groups, coincided with observation in Drosophila and Anopheles that gene cluster was the model and source for the expansion of RR-2 genes. In combination with the variation of members in each CP family among different species, these results indicated the evolution of CPs was highly correlated to the adaptation of insect to environment. Furthermore, we compared the amino acid composition of the different types CPRs, and examined the expression patterns of CP genes in various developmental stages. The comprehensive overview of CPs from our study provides an insight into their evolution and the association between them and insect development.


Assuntos
Evolução Molecular , Proteínas de Insetos/metabolismo , Mariposas/metabolismo , Animais , Proteínas de Insetos/genética , Mariposas/genética , Família Multigênica , Filogenia
11.
PLoS One ; 11(8): e0161667, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27560151

RESUMO

The pine moth Dendrolimus punctatus (Walker) is a common insect pest that confers serious damage to conifer forests in south of China. Extensive physiology and ecology studies on D. punctatus have been carried out, but the lack of genetic information has limited our understanding of the molecular mechanisms behind its development and resistance. Using RNA-seq approach, we characterized the transcriptome of this pine moth and investigated its developmental expression profiles during egg, larval, pupal, and adult stages. A total of 107.6 million raw reads were generated that were assembled into 70,664 unigenes. More than 30% unigenes were annotated by searching for homology in protein databases. To better understand the process of metamorphosis, we pairwise compared four developmental phases and obtained 17,624 differential expression genes. Functional enrichment analysis of differentially expressed genes showed positive correlation with specific physiological activities of each stage, and these results were confirmed by qRT-PCR experiments. This study provides a valuable genomic resource of D. punctatus covering all its developmental stages, and will promote future studies on biological processes at the molecular level.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Mariposas/genética , Transcriptoma , Animais , China , Feminino , Perfilação da Expressão Gênica , Biblioteca Gênica , Genoma , Proteínas de Insetos/genética , Larva/genética , Masculino , Metamorfose Biológica , Anotação de Sequência Molecular , Mariposas/crescimento & desenvolvimento , Pupa/genética , Análise de Sequência de RNA , Fatores de Tempo
12.
Artigo em Chinês | MEDLINE | ID: mdl-25856882

RESUMO

OBJECTIVE: To evaluate the schistosomiasis control effect of the measures of replacing cattle with machine for cultivation and forbidding depasturage of livestock on marshlands in marshland and lake regions. METHODS: The retrospective review and field survey were implemented in the Jiangling and Gongan counties of Hubei Province where were implemented with the measure of replacing cattle with machine for cultivation, and Yuanjiang and Huarong counties of Hunan Province where were implemented with the measure of forbidding the depasturage of livestock on marshlands. The schistosome infection status of human, cattle, and Oncomelania hupensis snails, and schistosome-infested field excreta were surveyed from 2007 to 2013. The effects of the interventions were compared before and after their implementations. RESULTS: The 6 villages of Hubei Province were implemented with the measure of replacing cattle with machine for cultivation, and 7 villages of Hunan Province were implemented with the measure of forbidding the depasturage of livestock on marshlands. From 2007 to 2013, the schistosome infection rates of residents declined from 3.95% to 0.70% (χ2 = 128.376, P < 0.05), with the descend range of 82.53%. The descend ranges of the measures of replacing cattle with machine for cultivation and forbidding the depasturage of livestock on marshlands were 83.081% and 81.62% respectively, and there was no significant difference between the two measures (χ2 = 0.132, P > 0.05). The infection rate of cattle decreased from 3.66% in 2007 to 0.65% in 2013, and the descend range was 82.24% (χ2 = 13.692, P < 0.05). The field excreta was surveyed in the snail breeding place in 2013. The investigated area was 157.435 hm2, and 625 samples of field feces of cattle were collected with the density of field excreta of 3.97/hm2, and the positive rate was 1.12% (7/625). The schistosome infection rate of snails and the density of infected snails decreased successively from 2007, and no infected snails were detected from 2011 to 2013. CONCLUSIONS: The schistosomiasis endemic situation are decreased significantly after the interventions of replacing cattle with machine for cultivation and forbidding the depasturage of livestock on marshlands. Therefore, schistosomiasis control effect of these measures is notable in the marshland and lake regions.


Assuntos
Agricultura/instrumentação , Doenças dos Bovinos/prevenção & controle , Controle de Doenças Transmissíveis/métodos , Esquistossomose/prevenção & controle , Esquistossomose/veterinária , Caramujos/parasitologia , Adolescente , Adulto , Idoso , Agricultura/métodos , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/parasitologia , Criança , China/epidemiologia , Controle de Doenças Transmissíveis/instrumentação , Reservatórios de Doenças/parasitologia , Fezes/parasitologia , Feminino , Humanos , Gado , Masculino , Pessoa de Meia-Idade , Schistosoma/isolamento & purificação , Schistosoma/fisiologia , Esquistossomose/epidemiologia , Esquistossomose/parasitologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...